Skip to content

普通物理学Ⅱ

:material-circle-edit-outline: 约 452 个字 :material-clock-time-two-outline: 预计阅读时间 2 分钟

Chapter 39 EM Waves and Light Wave

电磁波谱:

  • 可见光:$\lambda = 400nm - 700nm $
  • 红外:$\lambda = 700nm - 1000nm $
  • 微波:$\lambda = 1mm - 1m $
  • 无线电波:$\lambda > 1m $
  • 紫外线:$\lambda = 1nm - 400nm $
  • X-光:$\lambda = 0.01nm - 10nm $
  • Gamma-光:$\lambda < 10pm $

39-4

电磁波的传播:在自由空间中传播,电荷密度和电流密度均为零,即\(\rho_{e0} = 0,\vec{j_0} = 0\);

  • 电磁波是横波 \(\bf{E} \bot \bf{k},\bf{H} \bot \bf{k}\)
  • $\bf{E} \bot \bf{H} $
  • E,H是同相位的,即同时达到最大或最小
  • 满足右手定则 \(\sqrt{\kappa_e \varepsilon_0} E_0 = \sqrt{\kappa_m \mu_0} H_0\)
  • 速度 \(v = \frac{1}{\sqrt{\kappa_e \varepsilon_0 \kappa_m \mu_0}} = c\)

39-5

电磁波的能流密度与能量

  • 静电荷:\(u_E = \frac{1}{2}\varepsilon_0 E^2\)
  • 运动电荷:\(u_B = \frac{B^2}{2\mu_0}\) 对于电磁波,有\(B = \frac{E}{c}\),所以\(u_B = \frac{E^2}{2\mu_0c^2} = \frac{1}{2}\varepsilon_0 E^2 = u_E\)
  • 能量密度:\(u = \varepsilon_0 E^2,\langle u \rangle = \varepsilon_0 E_{max}^2 \langle sin^2(\omega t-kx)\rangle = \frac{1}{2}\varepsilon_0 E_{max}^2\)
  • 强度:
    • 一般的强度定义为波携带的每平方米的功率,即\(I = \frac{P}{S}\)
    • 对于电磁波,\(1s\)内通过\(1m^2\)方框的波的体积为\(1\cdot c\ m^3\),能量密度为\(\langle u\rangle\),所以 $$ I = c\langle u \rangle = \frac{1}{2}c \varepsilon_0 E_{max}^2 = \frac{E_0B_0}{2\mu_0} $$
  • 玻印廷矢量:\(\bf{S} = \bf{E} \times \bf{H} = \frac{\bf{E} \times \bf{B}}{\mu_0}\)

Chapter 41 Wave Optics

41-1 Introduction

  • 几何光学: \(\lambda << d\)
  • 波动光学: \(\lambda \approx d\)

Steady Light Wave(定态光波)

  • 波具有空间-时间周期性
  • 定态波: 相位与振幅相对稳定.\(U(P,t) = A(P)cos[\omwga t- \phi(P)]\),其中A(P)和\(\phi(P)\)是空间的函数,与时间无关 alt text

alt text

  • 产生干涉的条件:
    • \(\omega_1 = \omega_2 = \omega\)
    • \(\bf{U_1} || \bf{U_2}\)
    • \(\phi_1(P)-\phi_2(P) is steady\)